Multi-objective metaheuristic optimization algorithms for wrapper-based feature selection: a literature survey

نویسندگان

چکیده

In the data mining and machine learning (ML) discipline, feature selection problem is considered among many researchers in recent times. Feature process targets to minimize set number maximize performance accuracy by identifying optimal features. Multiple objectives are while hence multi-objective metaheuristic optimization algorithms (MOMOAs) applied. this study, literature review performed MOMOAs-for solving wrapper (WFS). The for WFS discuss challenges faced problem. on all relevant studies published last 12 years [2009-2022]. A detailed overview of preliminaries, MOMOAs-WFS, role classifier presented. outcome highlight existing works related using MOMOAs. Finally, research areas improvement identified emphasized scientists survey field

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Novel Multi-Objective Artificial Bee Colony Optimization for Wrapper Based Feature Selection in Intrusion Detection

This study proposes a novel approach based on multi-objective artificial bee colony (ABC) for feature selection, particularly for intrusion-detection systems. The approach is divided into two stages: generating the feature subsets of the Pareto front of non-dominated solutions in the first stage and using the hybrid ABC and particle swarm optimization (PSO) with a feed-forward neural network (F...

متن کامل

A new multi-objective mathematical model for a Citrus supply chain network design: Metaheuristic algorithms

Nowadays, the citrus supply chain has been motivated by both industrial practitioners and researchers due to several real-world applications. This study considers a four-echelon citrus supply chain, consisting of gardeners, distribution centers, citrus storage, and fruit market. A Mixed Integer Non-Linear Programming (MINLP) model is formulated, which seeks to minimize the total cost and maximi...

متن کامل

Feature Selection for Bankruptcy Prediction: A Multi-Objective Optimization Approach

In this work a Multi-Objective Evolutionary Algorithm (MOEA) was applied for feature selection in the problem of bankruptcy prediction. This algorithm maximizes the accuracy of the classifier while keeping the number of features low. A two-objective problem, that is minimization of the number of features and accuracy maximization, was fully analyzed using the Logistic Regression (LR) and Suppor...

متن کامل

Feature Selection for Bankruptcy Prediction: A Multi-Objective Optimization Approach

In this work a Multi-Objective Evolutionary Algorithm (MOEA) was applied for feature selection in the problem of bankruptcy prediction. This algorithm maximizes the accuracy of the classifier while keeping the number of features low. A two-objective problem, that is minimization of the number of features and accuracy maximization, was fully analyzed using the Logistic Regression (LR) and Suppor...

متن کامل

Metaheuristic Optimization based Feature Selection for Software Defect Prediction

Software defect prediction has been an important research topic in the software engineering field, especially to solve the inefficiency and ineffectiveness of existing industrial approach of software testing and reviews. The software defect prediction performance decreases significantly because the data set contains noisy attributes and class imbalance. Feature selection is generally used in ma...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Bulletin of Electrical Engineering and Informatics

سال: 2023

ISSN: ['2302-9285']

DOI: https://doi.org/10.11591/eei.v12i5.4757